
NASA Computational Mobility

Final Report

Grant No. NCC2- 14 I3

Project Performance Period - July I , 2003 to September 30,2004

Institute for Human 2% Machine Cognition
40 S . Alcaniz St.

Pensacola, FL 32502

.

Final Report Summary

This blue sky study was conducted in order to study the feasibility and scope of the notion of
Computational Mobility to potential NASA applications such as control of multiple robotic
platforms. The study was started on July lst, 2003 and concluded on September 30th, 2004.
During the course of that period, four meetings were held for the participants to meet and discuss
the concept, its viability, and potential applications. The study involved, at various stages, the
following personnel: James Allen (IHMC), Albert0 Canas (IHMC), Daniel Cooke (Texas Tech),
Kenneth Ford (IHMC - PI), Patrick Hayes (IHMC), Butler Hine (NASA), Robert Morris
(NASA), Liam Pedersen (NASA), Jerry Pratt (IHMC), Raul Saavedra (IHMC), Niranjan Suri
(IHMC), and Milind Tambe (USC).

A white paper describing the notion of a Process Integrated Mechanism (PIM) was generated as
a result of this study. The white paper is attached to this report. In addition, a number of
presentations were generated during the four meetings, which are included in this report. Finally,
an execution platform and a simulation environment were developed, which are available upon
request from Niranjan Suri (nsuri@,ihmc.us).

Process Integrated Mechanisms (PIMs)

1. Motivation
We are concerned with the control and coordination of teams of semi-autonomous robots
engaged in complex tasks requiring coordinated action in uncertain and possibly hostile
environments to achieve complex and changing goals.

There are presently no satisfactory techniques for reliably coordinating such teams in realistically
complex environments. The obvious and traditional approach is to include in the team a single
coordinating authority that directs and coordinates the activities of all team members. This
approach, however, has difficulties. There is a high communication overhead because the
coordinating authority needs to have complete and up-to-date information about the operational
state of each of the robots. In addition, the overall system is inherently fragile, as any damage to
the coordinating authority can render the entire team leaderless. The chief advantage of having a
single coordinating authority, however, is simplicity of implementation and predictability of
overall team behavior.

Agent-based approaches attempt to address the problems mentioned above. Each robot enjoys
“agent-hood” and is responsible for its own actions and maintaining its own world-view.
Coordination amongst the agents can require something akin to social negotiation with all its
concomitant uncertainties and high computational and communication costs. Partly as a reaction
to these problems, biologically-inspired approaches attempt to avoid explicit coordination
altogether. Under this view, organized behavior must emerge dynamically from the individual
actions of “swarms” of simple robots. What both these approaches lack is a common viewpoint
or perspective on the action of the entire team considered as an integrated system, making
programming and control of these systems very difficult.

We propose a novel architecture, the Process Integrated Mechanism (PIM), which has the
advantages of a single coordinating authority while avoiding the structural difficulties that have
traditionally led to its rejection in complex settings. We expect PIMs to improve on all previous
models with regard to coordination, security, ease of software development, and robustness.

2. The Architecture of a PIM
In the PIM architecture, the components are conceived as parts of a single mechanism, even
when they are physically separated and operate asynchronously. A PIM is a mechanism
integrated at the software level rather than by physical connection. It maintains a single unified
world-view, and behavior is controlled by a single coordinating process.

The idea is to retain the perspective of the single controlling authority but abandon the notion
that this process must have a fixed location within the system. Instead, we propose moving the
computational state of the coordinating process rapidly among the component parts of the PIM.
The key goal here is to gain the advantages from having a single controlling process, while
avoiding the problems arising in other approaches when this process is on a single processor.

The basic engineering technique is familiar from time-sharing systems and mobile code
technology, and in fact can be described as “inverse time sharing.” The code that implements the
coordinating process (CP) is installed on all the components, and each component maintains a

current run-time state of the CP. At any given instant, only one copy of the CP, on one of the
components, is actually running, where it has full access to any local data and can directly
control any locally performed activity. At some point this copy of the CP is saved, and the run-
time state is transmitted to the next component, where the CP immediately continues to execute.
This movement of the CP state between components is rapid compared to the necessary global
reaction time of the overall system, providing the illusion that the same process is running
everywhere. Importantly, the CP code itself can be programmed under this simplifying
assumption: the movement of the process state is invisible to it, as well as to an external observer
of the system’s behavior: it is handled at the operating-system level, and can be effectively
ignored at all higher levels. Note that although the architecture can be described as parallel and
distributed, the coordinating process itself runs serially, and interacts with any other local
processes only when it is running on the same platform as that process. Thus, the entire
distributed mechanism appears to the CP programmer as a single integrated platform. What
would seem to be a team of communicating autonomous robots when seen from the distributed-
coordination perspective is actually a single integrated mechanism that can change its distributed
shape by moving its parts, but has a single locus of control and maintains a single integrated
view of its world. This architecture requires an underlying technology that provides strong
mobility-the movement of the current execution state between processors. Work at IHMC has
shown that such models are both feasible and practical [I] [2].

This single coordinating view is a key aspect of our model, and to retain the integrity of this
perspective we impose several constraints on the systems architecture. The first is that the
system’s own view of the world should be identified with the computational state of the
coordinating process, so that an update to the CP is, automatically, an updating of the system’s
worldview. The second is that the updating of this state is the only way that local processes can
exchange information with one another. The architecture assumes that all coordination between
components occurs via changes to information stored in the state of the coordinating process. An
information-flow view of the architecture (see Figure 1) is a collection of interacting processes
where “vertical interaction” occurs within a local component and “horizontal interaction” is
handled by moving the CP state.

Although the CP code runs only intermittently on any particular component, each component of

I-’ Coordinating Process 1

Figure 1: Flow of Information in the PTM Model

a PIM may support processes that execute purely locally on that platform, running continuously
there. For example, low-level sensory processing that does not require intervention from high-
level control is best done locally, and local execution controllers may manage local physical
effectors. Such “reactive” processes may use up the bulk of the processing power on many
components, and can run asynchronously with the coordinating process. Note that most data can
be maintained locally on individual components, with the data accessible to the coordinating
process only when it is resident. Note also that computation involving that data may still proceed
as the process is running on another component as long as the necessary information is cached as
part of the CP state and moves with the process. When the need arises to access data not locally
resident or cached, the computation must wait until the coordinating process is again resident on
the component where the data is stored.

3. Understanding the tradeoff between residency time and coordinated
action
One of the major advantages of this model is that the programmer of the CP need not be overly
concerned with the system-level details of how the CP moves between the components of a PIM.
Nevertheless, these details will affect system performance in ways that require new modes of
analysis. For example, the rate at which the CP moves amongst components must be fast
compared to the required reactivity of the PIM.
We believe it is feasible in many important applications to cycle the CP amongst the components
quickly enough that all critical coordination decisions for a component can become available
(i.e., resident) in time to appropriately change its behavior. There are, however, interesting
tradeoffs between computation and coordination in setting the length of time that the CP is
resident on each component of a PIM. There are competing forces to balance:

A longer residency reduces the total fraction of time lost to transmission delays, thereby
increasing the computational efficiency of the PIM at the cost of increasing the latency of the CP
as it moves amongst the process, thereby decreasing the coordination and reactivity of the PIM.
Conversely, a shorter residency time enhances the system’s ability to coordinate overall
responses to new and unexpected events since the overall cycle time of the CP will be shorter.
But as we reduce the residency time, we increase the ratio of the overhead associated with
moving the CP and thus decrease the computation available to the PIM for problem solving. In
the extreme case, this could lead to a new form of thrashing, where little computation relevant to
coordination is possible because all cycles are being used to move the CP from one component to
the next.

Note that this tradeoff could be explicitly monitored and balanced during execution. For
instance, a PIM could detect the approach of thrashing and take action to avoid it by, for
example, increasing residency time. In another situation, when faced with the sudden need for
increased coordination, it might temporarily decommission some components, thus decreasing
the cycle time of the CP amongst the remaining components of the PIM without reducing the
residency time.

A key requirement of our model is that the time taken to cycle the CP between components is
small compared to the reaction time needed by the system. Conditions under which this
assumption might fail include situations involving limited bandwidth between components (such
as under water) or where remote communication fails altogether, but these conditions will pose

difficulties for any distributed system architecture. It will be important that designers of a PIM
make wise decisions as they fit the design of the PIM to the environment in which it must
operate. The proposed research will strive to better understand and characterize the trade-offs
inherent in the PIM architecture.

4. Advantages of the PIM Architecture
We believe that the PIM architecture will have substantial advantages over the traditional
models. A large part of this initial project would involve providing an initial analysis, and in
some cases, experimental evidence, that these advantages can be attained. Here are some of the
key intuitive advantages that need to be explored and validated.

Relative Simplicity of Code: Collections of agents or robots are notoriously difficult to manage
because of the difficulties in maintaining a sufficiently coherent global state and the problemk in
distributed decision-making across several processes. The PIM model alleviates these difficulties
and greatly simplifies the programmer’s task.

Robustness: A key issue if how the system behaves in the face of losing components. If a
component fails while the coordinating process is not resident, the operating system needs only
to re-route the CP update around the missing component (using conventional network-
management technology) and then the PIM will continue to operate with little effect (except that
the cycle time will be reduced, thereby improving the responsiveness of the PIM!). If a
component is destroyed while the CP is actually resident, the overall system can continue to
function without significant disruption by activating a slightly out-of-date copy of the CP from
another component of the PIM.

SimpliJication of coordination: As previously discussed, when a collection of robots is
conceptualized as a team of independent agents, many complex issues arise concerning how best
to communicate and coordinate the activities of the team. In fact, much of the communication in
such systems can involve negotiation between the agents. All such considerations are rendered
irrelevant by this architecture; they appear, if at all, only in the form of conventional issues of
data management within a conventional program.

Energy Consumption: In addition to simplifying communication, the PIM architecture also
should reduce the amount of communication needed, resulting in considerable energy savings,
for communication can be an order of magnitude more expensive than computation in robotic
applications. While robotic agents must communicate extensively to coordinate activity, our
model eliminates all point-to-point communication, involves no negotiation protocols, and
eliminates the need to move large volumes of data.

Effective management of Data: In a PIM architecture, the computational process goes to the data,
rather than moving the data to the computation. This is a big win in any application using
modem sensors, where the amount of data dwarfs the footprint of the CP state. But this is not just
a bandwidth issue. As sensors get smarter, they need to coordinate better to jointly interpret
observations. The PIM model should excel in simplifying the coordination requirements for large
networks of smart sensors.

Data Securiw: Since most data remains distributed and does not need to be communicated, this
model should be very effective for applications where the data is sensitive and cannot be
released. Our model allows access to the data but does not require that the actual data be

transmitted off-site; and since all transmission of information between processors is within the
state of the central process, security issues can be handled by one code stream.

Eflective Human//Machine Inteifaces: The new architecture provides an effective range of
options for humans in the loop. First and foremost, although the system is physically distributed,
the human can interact with the system as an integrated whole (enhancing situational awareness).
Furthermore, the architecture enables the human to be able to directly change, suspend or initiate
coordinated action in essentially real-time (Le., one cycle of the coordinating process). As
mentioned above, if cycle time becomes insufficient to meet the coordination demands of the
environment, it would also be simple for a human to decommission one or more components that
are not critical to the current task.

One particularly general advantage of this architectural model is that it does not require elaborate
protocols for communicating between agents, coordinating separate views of the situation or for
achieving consensus before taking group action. Another is that the actual code of the CP can be
largely written in a conventional manner appropriate for a single-processor platform,
independently from the architectural complexities of the dynamics of the coordinating state.
Taken together, these vastly simplify the top-level coding task, since the programmer should not
have to think about how the processing is distributed among the components; and by allowing
the use of conventional programming techniques, the overall system behavior is far more
predictable than emergent behaviors of multi-agent systems. On the other hand, the idea of a
single mechanism comprised of spatially separated parts that are independently mobile provides
new opportunities for robotic planning, movement and force coordination and other applications.
We expect that these will motivate new developments in programming techniques for advanced
robotic control and “adaptive shape” robots.

*
0
h
t

3
0

F9

E

c

b

0

h woo U

o o

0

0 0 0

0

L

0

3
d k

0

U

0 0

0

.

0

,

E:
d)
d)

E:
d) s

I
c)

w
0
d)
U z
0
k

CA
c,

8 a

if
/

n L
0
U

. C .

0

ui -
n

.

U
a,

L

n

* * ca s
d)
I

ca
m

c
9

Td
E: ca

0

..
6l
k
0
c! a
cd

$4
cd c

d)
0

h ca

ca Td
d)
c,

d)

8 E:
0

Q)

0

d) >
0
CI
0
k
w
0
m
?-l

0 >
E:
0

m
*

3
c,

El 3
CI
9 4

u k
E
. e bQ

El
5
' A
k

c,
0 cs
8
c,
c, ca

w e n
c,
0
CI
8
c,
c, ca

cF1
El
0
0
d)
k

ce
k
0
d)

G

0

d)
0

m n
d)
k
5
0 ca
Q
5
E: ca

c,
0
CA
c, ca
CI
E s .
d

0 ce c V
v;

. h + *
3
0
Y

8 s
0
k
.& a,

;
0 Tb

d
cd

m
0 . '4

a,
3
CA 2

cd a
0 s
a, a

Y

E
Y
h

h

2
3
L)

0

rcr 8 8
2
Y
cd

bi3
?G
Y

'0
a, d

G
'k
- Y

?'
5

Y

2

d
0
0

e .
* + m h

d
0
-4
Y

E a,
d

0
a,
k

3
d
cd
0

a,
0
0
cd

m
a,

0 rcc
2 L

Tb
d
cd

L

h +
a, a
cd

0
m
Y

2 a
0 s
Y

td .
4 cr;

j;

z
Y
.I+ -
0
El

a,
9 Y c

a, a, r: Lc k

Tb c
cd
m
Y

2 a
0
9
u

.rl u

U

k
0 rcc

2
3
bJ3
rF:
d
0
0
d

a, a
Y
.4 cd

c
.rl 2 E!

0
M

k

cd
a,
0

2
M

0
cd
c, cd

0
..
Q
h,
-Y
'v s

'0
cd c

cd
0
m

2
cd a
0
9

Y

X
a,
H

R
0
0

h
cd
5
a

M
M

Y

Y
0

a,
cd
0

e
Y u a,

0 0- c c
cd
0

0
k

2
cd
Q F1

.r(0
9

m
Y

2 a
0
9
Y

t.

El z 0 '
CA

8
cr; d: vi

G
U

cl
0 x
s
m

h

5
0

0
r
n t:
c-,

h
G

sj
c,
h

a"
c,
0
cl

a"

Niranjan Suri

Institute for Human & Machine Cognition Shmc http://www.i hrnc.us,

0

Definition
Movement of Data, Code, Computation,
and Execution State from one System to
Another Over a Network Link

1

Types of Mobility
w Physical Mobility - Movement of Physical

Objects in the Environment

w “Logical” Mobility - Movement of Bits Over
a Communications Link from One
Computer to Another
e Types: Data, Code, Computation, Execution

nMode: Push, Pull
State

Mobile Data
w Movement of Data From One Host to

Another
The Most Common Form of Mobility

Encompasses everything except code,

c At some level - everything is data

w Not Important For Our Purposes

computation, state

2

Mobility - Another Perspective
RPC, Servlets,

Stored Procedures
A

Mobile Remote
Code + Installation

J
Checkpointing

Mobile Code
w Allows executable code to be moved to a

May use the push or pull model
new host

o Pull: Applets
E Push: Remote Installation

native) or source
Code may be binary (intermediate or

3

Mobile Code
Advantages:
c Dynamically change capabilities

rn Download new code to add / change / update

H Remove code when no longer needed
capabilities of platform

Problems:
nSecurity concerns due to untrusted I

unchecked code
Code could be malicious, buggy, and/or tampered

Mobile Computation
Evolution of Remote Computation

RPC, RSH, RMI, Servlets, Stored Procedures,
CORBA

Allows one system to run a computation

Utilize resources on remote system

H Access resources on remote system

on another system

oCPU, memory

e Files, databases, etc.

Mobile State
Evolution of State Capture
o Checkpointing

Allows execution state
captured and moved
State may be machine
independent
May contain

of a process

specific

ci State of single or multiple threads
Code

to be

or machine

Mobility Matrix
Data

Browsing, t SETI@home

Push FTP Upload

Code

Applets,
JavaScript,
Jini

Remote
Installation,
Mobile Agents

Computation

While You’re
Away (WYA)

RPC, RMI,
Grid
Computing

Execution
State

While You’re
Away (WYA)

Migration

5

Weak -vs- Strong -vs- Forced
Weak Mobility
u Computing entity requests movement
c1 Entity “restarts” execution after move operation
o Combines Mobile Code and Mobile Computation

Computing entity requests movement
u Execution continues after movement
ci Combines Mobile Code, Mobile Computation, and Mobile State

ii External, asynchronous request for movement
Execution continues after movement
Computing entity may not be aware of movement

u Combines Mobile Code, Mobile Computation, and Mobile State

Strong Mobility

Forced Mobility

I Weak -vs- Strong -vs- Forced
RPC, Servlets,

Stored Procedures Weak
Mobility

c
Strong I

9 Forced i Mobility j
I

Process
Migration

0

Remote
Installation

Checkpointing

6

Weak Mobility Example One
public class Visitor

{
public V i s i t o r 0 I

System.sut .println (“Starting”) ;
move (“hostl”, this, “a”);

I
public void a 0 (

System.out .println (“On host one”) ;
move (“host2”, this, ”b”) ;

1
public void b o t

System.out.println (“On host two”);
move (‘host3“. this, ”c”) ;

I
public void c 0 {

System.out.println (”On host three”) ;
move (“hostl”, this, “a”) ;

I
I

Weak Mobility Example Two
public class Visitor
I

public Visitor() !
System.out.println (“Starting”);
go (“hostl”, this) ;

1
public void r u n 0 {

if ! ~ where == 0) !
Systern.out.println (“ O n host one”);

~ where = 1;
go (‘host2”, this);

I
else if (-where == 1) (

Systern.out.println (‘On host t w o ”) ;
- where = 2;
go (“hoat3”, this) :

I
else if (where == 2) (

Syst&.out.println (“ o n host three”) ;

go (‘hostl”, this);
where = 0;

1
I
private int _where = 0;

1

7

Strong Mobility Example
p u b l i c c l a s s V i s i t o r

p u b l i c V i s i t o r 0

{

{

S y s t e r n . o u t .pr int111 (“ S t a r t i n g ”) ;

w h i l e (1) {

go (“ h o s t l ”) ;

S y s t e m . o u t . p r i n t l n

g o (“ h o s t 2 ”) ;

S y s t e r n . o u t . p r i n t l n

go (“ h o s t 3 ”) ;

S y s t e r n . o u t . p r i n t 1 n

)

1
)

‘On h o s t o n e ”) ;

“On h o s t t w o ”) ;

“On h o s t t h r e e ”) ;

Forced Mobility Example
Visitor Not Appropriate

Mobility is dictated by external entity
Examples :
u Survivability
u Load-balancing
Concrete Example - While You’re Away

ci System for utilizing idle workstations
c Abstraction - roaming computations

(WYA)

8

VVYA Design

4-

6-

\

WYA Server

Job Queue

Free Workstation

I I I

W A Programming Abstraction
public class Mycomputation extends RoamingComputation
(

public void init (String args [I)

(

)

/ / Perform any initiallzation required :?ere

public void compute0
(

I
/ / Actual computations go here

public void reportResults0
(

I
/ / Report results bacc to the user here

I

Forced Mobility Example Two

R"""l"g

public class Jumper
I

public J u m p e r 0 (

System.out.println ("Starting");
new M o v e r O . s t a r t 0 ;
uhila (1) {

1
Synten.out.println ("hello, w o r l d ") ;

prepare to capture I
caplure Wrlle O"1
state Slate

public class Mover extends Thread
i

public void r u n 0 !
for (int i = 0; i < hosts.iength; I++) (

go (hosts[i]);
Thread.sleep (100);

I
1

1

Process Cvcle

To T,

10

Mobility Abstraction
Process is Continuously Moving
Code Has no Knowledge of Current Host
Code Prefixes Operation with a Scope that
Identifies the Host
Operation Gets Performed when
is on that Host

Process

Visitor Example Revisited
p u b l i c class V i s i r o r
{

p u b l i c V i s i t o r 0
{

Systern.out . p r i n t l n ("Star t ing") ;
whi le (1) {

hl .Sys tem.out . p r i n t l n ("On h o s t one") ;
h2.System.out . p r i n t l n ("On hos t two");
h3.System.cut . p r m t l n ("On h o s t t h r c c ") ;

)

)

11

One Possible Realization.. .
H Hosts Form a Logical Ring
H Process is Created on one Host
H At Fixed Intervals (Timeslices?), Process is Migrated

from Host, to Host,,,
H Generic Operations May be Performed on Any Host
H Operations Qualified by a Host will be Performed only on

that Host
u Runtime system blocks until process is on required host
u Runtime system possibly leaves process on required host until

operation is completed
u A form of critical section Host,

Host,

Host,

Another Example
publlc class WasteTirne
{

public WasteTimc 0
{

Systcrn.out .println (“Starting”) ;
while (1) i

float a - hl.rezdValue0;
float b = Math.sin (a);
float c - Meth.cos (bl;
h2. writevalue (c) ;
float c = Math.acos (cl;
float c - Math.asin (d) :

h3. writevaluc (e) ;

12

Variation on the Theme
rn Process Migration Path is Determined by

Operation to be Performed
c If program wants to do something on Host,,

migrate directly to Host,

rn Could Result in Certain Hosts being
Ignored

Undesirable if hosts deliver asynchronous
events to process

I n te rest i n g " Perform a n ce"
Quest ions
rn What is a Good Timeslice?

What is the Maximum Number of Hosts?

rn When do you Start Thrashing?

rn Answers Depend on Current State of the

rn What can we Project about the Future?
Art in Implementation

Interesting “Abstraction” Questions
What is the Best Abstraction?
u Is mobility dictated by the program?
G Is program dictated by the mobility?

0 Can System. CurrentTimeMillis () run

Will cause clock synchronization problems
Division Between Higher-order Functions and
Lower-order Functions

rn Splitting / Joining Groups
o Equivalent of a fork() /join()?

What about Time?

anywhere?

Available Resource - Aroma VM
Clean-room implementation

rn State capture mechanism
rn Dynamic, fine-grained resource control
o Disk, Network, CPU

rn JDK 1.2.2 compatible
c Uses Java Platform API from JRE 1.2.2
L No AWT / Swing

(SPARC)
Ported to Win32 (x86), Linux (x86), Solaris

No Just-In-Time compilation (in progress)

14

ASA Ames Research Cente

Multiple component nodes embody:
- Computational capability
- Sensing capability
- Actuation capability

- De-centralized processing and control
- Robustness
- Process adaptivity

- Distributed sensing

Computational Mobility emphasizes:

But other modalities are also possibleldesirable:

- Sensors residing in the component nodes are spatially
distributed 3 improved coverage in space, time, and
wavelength

- Distributed Actuation
Actuation residing in the component nodes are also spatially
distributed 3 force and torque manipulation beyond what is
possible from a single node

&[File] 1

Traditional Robotics
Kinematic chains

Forces and torques are transmitted through mechanical linkages to the end
effector
The system is limited in the external forces and torques it can exert through
the end effector by the kinematic chain
System mass and size scales with the size of the object(s) you wish to
manipulate Y j

4

Distributed Actuation
Distributed ComputationallSensinglActuation Nodes
- Forces and torques are transmitted by each unconnected node
- External forces and torques are possible that are not limited by any

mechanical connection
- System mass becomes independent of the size of the object(s) you wish to

manipulate

- Possibilities:
* Conformal Forces

- Liftinglpositioning large objects
- Liftinglpositioning delicate object
- Multi-component assembly
- Large size-scale compressive forces
- Large size-scale expansion forces

&[File] 2

Robot Team Scenario

Robotic exploration of Mars
Mobile robots will serve as the remote sensors and data collectors
for scientists.
To create an outpost for such long-term exploration, robots need to
- assemble solar power generation stations,
- map sites and collect science data,
- communicate with Earth on a regular basis.

In one scenario, a large number of robots (20-30) are sent, many
with different capabilities. Some of the robots specialize in heavy
moving and lifting, some in science data collection, some in drilling
and coring, and some in communication. The rovers have different,
but overlapping, capabilities - different sensors, different resolutions
and fields of view, even different mobility, such as both wheeled and
aerial vehicles.

1

Robotic exploration of Mars
Upon landing, the rovers search for a location
suitable in size and terrain for a base station.
Once such a location is found, rovers with
appropriate capabilities form several teams to
construct the base station capable of housing
supplies and generating energy.
- Two rovers carry parts, such as solar panels, that are

- Complementary capabilities are exploited - for
too large for a single rover.

example, to align and fasten trusses, rovers with
manipulators receive assistance from camera-bearing
rovers that position themselves for advantageous
viewing angles.

Robotic exploration of Mars
Rover failures are addressed by dispatching a
rover with diagnostic capabilities. The
diagnostic rover can use its cameras to view the
failed robot to see if it can be aided in the field
(e.g., if it has a stuck wheel or is high-centered),
or it may drag the rover back to the base station
to be repaired by replacement of failed modules.
In the meantime, another robot with the same (or
similar) capabilities can be substituted, so as to
complete the original task with minimal
interruptions.

2

.

Robotic exploration of Mars
At any given time, different teams of rovers may be involved in
exploration, base-station construction/maintenance, and rover
diagnosis/repair.
Many tasks will be time critical, requiring execution within hard
deadlines (e.g., repair of a failed power generation station) or
synchronization with external events (communication satellite
visibility, periods of sunlight).
The teams form dynamically, depending on the task, environment,
and capabilities and availability of the various robots to best meet
mission requirements over time.
The rovers negotiate their individual roles, ensure safety of the
group and themselves, and coordinate their precise actions,
attempting as a group to avoid unnecessary travel time, to minimize
reconfiguration and wait time, and to prefer more reliable
alternatives in cases of overlapping capabilities.
The challenge is to keep all the robots healthy and busy in
appropriate tasks, in order to maximize the scientific data collected.

Robotic exploration of Mars
Similar scenarios exist for domains such as habitat
construction, space solar power construction and
maintenance, and Space Station maintenance.
- For instance, consider an inspection robot that has identified a

failed component on the Space Station. It tries to assemble a
team of robots to replace the failed component. After
negotiation, a courier robot (capable of retrievin the necessary

the failed device) take responsibility for the repair task, leaving
the inspection robot free to continue inspection. While the
courier collects the replacement part, the repair robot evaluates
the problem and plans its course of action, possibly seeking
additional aid if it encounters unexpected difficulties it is unable
to resolve. Upon arrival with the replacement part, the courier
and repair robot ti htly coordinate their actions, turning
themselves into wiat is effectively a single high degree-of-
freedom robot.

replacement part) and a repair robot (capable o 9 swapping-out

3

Coordinated Science Observation

Requires inter-satellite communication

_- - -

Coo rd i na ted Sci en ce 0 bse rva t ion

Discard future observations
Insert new obs.

4

Coord hated Science
0 bse rvat ion

7
& future observations

now

5

I

Niranjan Suri

. .-

Goals
Extend a standard Procedural Language -
Java -to operate in a ScatterBot
environment

might be realized

arise in the proposed language and
implementation

Hypothesize about how such a language

Examine ScatterBot-specific issues that

. -- I 9% I Questions

I Is it right to call Java a procedural
language?

Basics
Assume that each bot part is represented
by an object (an instance of some class)
oThe type of the object (Le., the class)

represents the type of the bot-part
We can leverage object-oriented notions of
subclassing (is-a relationships) and
containment (part-of relationships) to model
bot-parts

2

“Types” of 0 bjects
rn There are Two Fundamental “Types” of

Objects
Generic Java Objects (e.g., Strings, Vectors,
etc.)

nObjects “Bound” to Bot Parts (Bot Objects)
Similarity to Java native methods

Operations on Objects
rn Three Basic Operations:

Read a variable
Write a variable

cCall a method

rn Same Operations on Bot Objects

3

Implementation Thoughts
At the Java VM level, most bytecodes
manipulate the operand stack and local
variables - these can execute anywhere
There are 3 types of bytecodes to worry about:
t; putstatic, getstatic
E putfield, getfield
G Invokevirtual, invokestatic, invokeinterface,

invokespecial
If any of these are executed on a Bot Object, the
VM must execute the resultant operation only on
the corresponding Bot part

Multiple Conditional Example
public class Test
{

public void dosomething0
{

if (a & & b & & c & & d & & e) {

I
System.out .println ("eureka") ;

I

private boolean a;
private boolean b;
private boolean c;
private boolean d;
private boolean e;

4

I

Multiple Conditiona Example
0 aload-0
1 getfield Test/a Z
4 ifeq 4 3
7 aload-0
8 getfield Test/b Z
11 ifeq 43
14 aload-0
15 getfield Test/c Z
18 ifeq 43
21 aload-0
22 getfield Test/d Z
25 ifeq 43
28 aload-0
29 getfield Test/e Z
32 ifeq 43
35 getstatic java/lang/System/out Ljava/io/PrintStrean;
38 ldc "eureka"
40 invokevirtual java/io/PrintStream/println(Ljava/lang/String;)v
43 return

I m p le me n ta t i on I ss u es
What About Multiple Threads?

w How is Synchronization Handled?
w Are Methods Blocking on Non-Blocking?
E If you invoke a method to move a robot to a

certain position, does the method return
before or after the robot moves to that
position?

4 Concern: Does Allowing Multiple Threads
Make the Program As Complex As A
M u It i- Ag e n t System?

5

Potential Example To Elaborate
Two robots, one stationary with a
package, one mobile with an arm
objects up

sensor
to pick

The programming problem is to write code
to make the mobile robot go pick things up
and bring them back to the stationary
robot to examine with the sensor package

Robot Coordination Example

6

I ex
B

Robot Coordination Example (2)

public class Reirlerel

.w*,
Enhancing the Coordination
Example

What is the model for multiple retrievers?
Issues to consider:
c Multiple retrievers need to be tasked in

c Retrievers may finish at different times
c Retrievers may collide (or compete as they

parallel

bring the samples to the analyzer)

I

I I Scatterbots

Daniel Cooke
Computer Science Department
Texas Tech University

v

I

AI s
I

Tuple Space

I Tuple Space is an abstraction for the communication path
‘Bots are connected to the space

Center for Advanced Intelligent

:AIS
Tuple Space

Executive "lives" in the entire space - all bots and the TS

'Bots native codes live only on particular 'bot(s)

Executive is only one who can place data in TS

Natives can only get codes/data from the TS

Executive can place data in the TS

Center for Advanced intelligent
Systems

cAIs
Tuple Space - Strict

I

Executive Moves to Bot with Data to be Processed and

Non-strict - the executive may place the distilled results
in the tuple space and pair it with bots who need the
information

New bots can be added via the tuple space

Bots can be removed via the tuple space

1;- then moves on with distilled data

Center for Advanced intelligent

2

AIS

i

DA TA!

Bot 1

Tuple Space - Strict

~~

Bot 2

Bot I Ex + bi

Bot n

When a Bot(i) has important data the executive (Ex) moves with appropriate bot (bl) code
to process data - minimizing movement of data

Center for Advanced Intelligent
Systems

Tuple Space - Strict

I Bot1 I

I Bot 2 I

Bot n

~~

Tuple Space 1
Executwe Code Tuple

Bot 1 Code Tuple
Bot 2 Code Tuple

Bot n Code Tuple

When a Bot(!) is no longer needed, helshe can inform the executfve and remove code from
TS

Center for Advanced Intelligent

:AIS
Adding to theTuple Space - Strict

Bot 1

Bot 2 I
I Boti

I Botn I

I Botn+l EX I
Bot n+l Code Tuple

I
When a new bot (n+l) becomes available - helshe can add code to the tuple space and
inform the executive

Center for Advanced Intelligent
Systems

4

